TiO2/Graphene oxide nanocomposite as an ideal NO gas sensor: A density functional theory study

Authors: not saved
Abstract:

We performed a density functional theory investigation on the structural and electronic properties of pristine and nitrogen-doped TiO2/Graphene oxide nanocomposites as the adsorbents for the removal of toxic NO molecules in the environment. We presented the most stable adsorption configurations and examined the interaction of NO molecule with these doped and undoped nanocomposites. It turns out that the NO molecule is preferentially adsorbed on the active oxygen and nitrogen atom sites of nanocomposite. The insights of the computations include the structural and electronic analyses such as bond lengths/ angles, adsorption energies, density of states (DOSs) and molecular orbitals. It was found that the adsorption of NO on the N-doped nanocomposite is energetically more favorable than the adsorption on the undoped one, representing the higher reactivity of N-doped nanocomposites with NO molecule. It means that the adsorption on the N-doped nanocomposite provides the most stable configurations and consequently the most efficient adsorption processes. Nevertheless, our computational study on TiO2/Graphene oxide nanocomposites suggests that the N-doped nanocomposites are more sensitive than the undoped ones when utilized as detectors or sensors for NO detection.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

GasniGraphene-manganase oxide nanocomposite as a hydrogen peroxidase sensor

A feasible and fast method to fabricate hydrogen peroxide sensor was investigated by graphene-manganase nanocomposite carbone paste electrode. In the present work, in first step, the graphene was synthesized by chemical method and in second step, manganese oxide nanoparticle was doped on graphene. graphene-manganase nanocomposite was characterized by FTIR and SEM. The nanocomposite shows a high...

full text

GasniGraphene-manganase oxide nanocomposite as a hydrogen peroxidase sensor

A feasible and fast method to fabricate hydrogen peroxide sensor was investigated by graphene-manganase nanocomposite carbone paste electrode. In the present work, in first step, the graphene was synthesized by chemical method and in second step, manganese oxide nanoparticle was doped on graphene. graphene-manganase nanocomposite was characterized by FTIR and SEM. The nanocomposite shows a high...

full text

A Density Functional Theory Study of Boron Nitride Nano-Ribbons

The electronic and structural properties of pristine and carbon doped (C-doped) boron nitride nano-ribbons(BNNRs) have been studied employing density functional theory (DFT) calculations. Total energies, gapenergies, dipole moments, and quadrupole coupling constants (qcc) have been calculated in the optimizedstructures of the investigated BNNRs. The results indicated that the stability and gap ...

full text

Density Functional Theory Study of B6C4Si Cluster as a Novel Drug Carrier

The aim of the present study was to prepare new cluster (B6C4Si) as an antibiotic carrier. Density functional theory (DFT) method at the B3LYP level of theory in conjugate with the 6-311G** basis set was used to evaluate the interaction between B6C4Si cluster and Penicillin. Binding parameters, HOMO, LUMO and HOMO- LUMO GAP were calculated. Results show the ‍ B6C4Si HOMO–LUMO gap value of 0.13...

full text

A Density Functional Theory Study of Structure of Phosphonic Acid

The molecular structure of the stable conformation of phosphonic acid in gas phase has beencomputed by employing complete geometry optimization in Density Functional Theory(DFT) methods. The methods used for calculations are B3LYP, BP86 and B3PW91 that havebeen studied in two series of basis sets: D95** and 6-31+G(d,p) for hydrogen and oxygenatoms; LANL2DZ for phosphorus. Bond lengths and angle...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 5  issue 4

pages  245- 255

publication date 2016-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023